HandSonor: A Customizable Vision-based Control Interface for Musical Expression
Srinath Sridhar
MPI Informatik and Universität des Saarlandes

MOTIVATION
Interfaces for music synthesis are typically non-customizable and do not make use of all the degrees-of-freedom of the human hand.

GOALS
- Develop a method that uses computer vision to track the user’s full hand motion and convert it into music.
- Give users complete control over the type of musical instrument and how they want to play it.

CONTRIBUTIONS
- Computer vision based hand motion tracking system
- Instrument-hand parameter mapping system
- Music synthesis system to transform hand motions into sounds
- Pilot study to assess user perception about HandSonor

Experimental Setup
Setup with 4 calibrated and synchronized cameras, a display and speakers.

Hand Motion Tracking
- Hand Skeleton Image
- Silhouette Image
- Multiview Input
- 3D Sum of Gaussians Hand Model
- 2D Sum of Gaussians Image
- Tracked Hand Motion

Parameter Mapping
- Continuous instrument parameters are mapped using mapping functions e.g. theremin, violin.
- Discrete instrument parameters are modeled as boolean parameters and mapped using an indicator function and several activation regions e.g. piano, drumkit.

GUI allows users to creating mapping schemes for continuous and discrete instrument parameters.

Technical Performance and Pilot Study
- Degrees-of-freedom: 26
- Interactive Framerate: 17 FPS
- Latency: 30-60 ms

Pilot study consisted of a playing task to evaluate if users were able to reproduce a musical piece and an exploration task to evaluate if they could create new mapping schemes.

Users playing music using HandSonor
- Piano
- Theremin

Supervised by
Prof. Dr. Christian Theobalt
Dr. Antti Oulasvirta
I would like to thank Anna Feit and Thomas Helten.