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Figure 1. We investigate the dexterity of using multiple fingers for mid-air input. The paper reports performance and individuation characteristics of
fingers and deploys them to the design of a mid-air text entry method using multi-objective optimization. Here we show an example of the word ‘hand’
being typed using one of our automatically obtained designs.

ABSTRACT

This paper investigates an emerging input method enabled
by progress in hand tracking: input by free motion of fin-
gers. The method is expressive, potentially fast, and usable
across many settings as it does not insist on physical con-
tact or visual feedback. Our goal is to inform the design of
high-performance input methods by providing detailed anal-
ysis of the performance and anatomical characteristics of fin-
ger motion. We conducted an experiment using a commer-
cially available sensor to report on the speed, accuracy, in-
dividuation, movement ranges, and individual differences of
each finger. Findings show differences of up to 50% in move-
ment times and provide indices quantifying the individuation
of single fingers. We apply our findings to text entry by com-
putational optimization of multi-finger gestures in mid-air. To
this end, we define a novel objective function that consid-
ers performance, anatomical factors, and learnability. First
investigations of one optimization case show entry rates of
22 words per minute (WPM). We conclude with a critical dis-
cussion of the limitations posed by human factors and perfor-
mance characteristics of existing markerless hand trackers.
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INTRODUCTION

This paper investigates an emerging category of input enabled
by progress in computer vision-based hand tracking: input by
free motion of the hand involving any and all fingers. Un-
til recently, computer vision-based input was limited to gross
movements of the arm and a few basic hand poses like pinch-
ing [3, 39]. However, recent methods can track full hand
articulation using a single camera (e.g. [21, 27]). Leverag-
ing the hand’s capacity “directly” without intermediary de-
vices like joysticks or buttons has always appealed to HCI
researchers. With its many degrees of freedom, and fast and
precise movements, the hand is the most dexterous of the ex-
tremities [12, 19]. Furthermore, freehand motion could pro-
vide an always-on input method, as only a camera is required.
The method could alleviate the known input limitations of
wearable or mobile devices.

Our goal is to inform the design of high performance input us-
ing multiple fingers in mid-air. High performance is decisive
in activities like text entry, virtual reality, command selection,
and gaming. However, previous work has focused on elicit-
ing intuitive multi-finger gestures from users [23, 26]. This
leaves out many issues, including performance characteris-
tics of gestures involving single and multiple fingers simulta-
neously. To push the field forward, designers need to know
some key factors affecting performance: How fast can users
move their fingers? Can all fingers be moved independently
and accurately? What are their movement ranges? How to
combine fingers with different properties in one gesture?

Our work focuses on chord-like motions in mid-air as shown
in Figure 1. These are easy-to-perform and familiar gestures,
and among the few gesture categories that current computer
vision sensors can reliably track. In this input gesture, there
is no external target like a button (cf. most previous work
on mid-air text entry [1, 20, 25, 35]). The involved fingers



are extended or flexed at a single joint to a discriminable end
posture. Although this input method can be used with visual
feedback, it allows for eyes-free input after memorization.

We extensively study the dexterity of single fingers in a target
selection task. Users were asked to move a finger quickly and
accurately between two angular targets (e.g. from a neutral
resting position to the maximum position “down”). We assess
each finger separately to report on three critical factors:

e Speed and accuracy of angular motions of fingers mea-
sured by Fitts’ law models [17].

¢ Individuation of fingers, as measured by the so-called
Schieber index [33]. It captures the extent to which non-
instructed fingers remain still when a finger is moved.

o Comfortable motion ranges of fingers reported by users.

The results afford several insights. First, we report perfor-
mance characteristics of each finger. The data show differ-
ences of up to 50% in movement times. Second, we asked
users to move fingers comfortably and report on their motion
ranges when using computer vision tracking. Third, to our
knowledge, this is the first paper to report individuation in-
dices for joints in HCI. For the middle and ring finger, coacti-
vation can be so high that input may be compromised by false
activations. In contrast, coactivation of other fingers while
moving the thumb is virtually non-existent. We argue that in-
dividuation is a critical consideration in multi-finger input in
mid-air which lacks physical resistance.

Our second contribution is to propose how to use this data in
the design of high-throughput gesture sets. While our study
considered only single joints, we attempt to apply our find-
ings in the design of multi-finger input. The approach builds
on literature in motor learning and assumes that multi-finger
performance is limited by the slowest joint [13, 32]. More-
over, we exploit the fact that individuation constraints do not
apply if co-dependent fingers participate together in a gesture.
The benefit of these two assumptions is that the derivation of
models to inform hand gestures is significantly less expensive
than a study that tried to look at all combinations of fingers.
Even with only three discretization levels per joint such an
approach would have to cover roughly 10'° gestures. Finally,
we use our findings to construct a proof-of-concept objec-
tive function called PALM to optimize text entry in mid-air.
PALM considers performance (P), anatomical comfort (A: i.e.
individuation), learnability (L), and mnemonics (M) to opti-
mize multi-finger gestures. First investigations of a text en-
try method optimized for one-handed input show entry rates
of 22 WPM. However, we note that users’ performance was
limited by brief training times, individuation constraints, and
relatively limited performance of the tracker.

To summarize, this paper informs the design of high-
performance input methods in mid-air by

1. providing ready-to-use models and look-up tables on per-
formance, individuation and movement ranges of fingers,
and

2. showing the applicability of the results by proposing an ex-
tension to multi-joint gestures and exploring its use in the
multi-objective optimization of mid-air text entry methods.
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Figure 2. Left: Aspects of human hand anatomy with bones (green) and
joints (blue). Right: We focus on flexion-extension of the five fingers.

BACKGROUND: CHARACTERISTICS OF FINGER MOTION
Our investigation of multi-finger input is informed by hand
anatomy, the degrees of freedom of its joints, the performance
of finger motion, and the limitations posed by dependencies
on finger movement.

The Kinematic Skeleton

The skeleton of the human hand has 27 bones, the inter-
faces of which form the wrist and finger joints [12, 32] (Fig-
ure 2 shows a simplified skeleton). Together, this results
in more than 25 degrees of freedom (DOFs) for the hand.
In this paper, we focus on a subset of these DOFs. Fin-
ger movement (flexion—extension and abduction—adduction)
is controlled by extrinsic muscles in the arm and intrinsic
muscles in the hand. All joints except the Metacarpopha-
langeal (MCP—Index, Middle, Ring, and Little), and car-
pometacarpal (CMC—Thumb) have one DOF each. As hu-
mans we can describe hand gestures with terms like thumbs
up or v sign. However, a formal representation is needed for
study and use in computer vision-based input. We use a kine-
matic skeleton [24] to parametrize gestures. The hand skele-
ton configuration ® can be specified by angles of the joints

connecting the bones, i.e. @ = [01,0s, ..., Oi]T, 0eR.

Movement Performance

Finger movement performance can be quantified by move-
ment time M 7T which is the time it takes for an end-effector
to reach a target from a given distance. Fitts’ law has been
highly successful for predicting MT with traditional input
devices [17]. It estimates the upper bound of pointing per-
formance achievable after practice. Given a target of width
W and distance D, Fitts’ law states that the M T to reach the
target is given by MT = a + blog,(D/W + 1). Fitts’ law
has also been used previously to quantify performance differ-
ences in fingers, wrist, and forearm [4, 7, 15, 18, 28]. How-
ever, in this work, we use angular motions at joints instead
of translation [14]. Considering the angular target width ayy
and distance Sp, we get:

mtyg = ag + by log, (gD—I—l) . (D)
w

To acquire the a and b parameters, we conduct an experi-
ment that employs a unidimensional pointing task. We ad-
dress speed—accuracy trade-off in this task by using effective
width W and distance D.



Inter-Finger Dependencies

Movements of the hand act over multiple joints which makes
coactivation of non-contributing joints common [12]. For
example, many people cannot move their ring finger with-
out coactivated movement of the little finger. More gener-
ally, coactivation is known to be larger among the metacar-
pophalangeal and the proximal interphalangeal joints [12,
33]. Hand gestures should minimize the extent of unintended
coactivation of non-instructed fingers. Coactivations can be
hard to inhibit and can cause recognition errors.

Schieber [33] proposed an index of individuation that indi-
cates how independently an instructed finger can be moved
from all others. The index was modeled for monkeys and hu-
mans [10]. A fully independent finger does not involve coac-
tivation of other fingers during its activation, or vice versa.
The individuation index is widely known in neuroscience, but
largely disregarded in HCI. In order to compute it for every
finger, the position of the non-instructed digit is plotted as a
function of the instructed digit’s position. The resulting tra-
jectories are typically linear and the slope of a line fitted to
these data points serves as a measure for the relative coac-
tivation: the extent to which a non-instructed finger moves
relative to the instructed finger. Given the coactivation C};
of finger ¢ during the movement of finger j, the individuation
index of j is

lj=1- [(Z | Cij [ =1)/(n=1)], 2

where n = 5 is the number of fingers. I; = 1 indicates
perfectly individuated movement, and I; = 0 if all non-
instructed fingers move simultaneously with j. The original
study of individuation was reported for fingers, but it can be
extended to multiple joints used in multi-finger input.

EXPERIMENT: FINGER DEXTERITY

Our experimental method is based on the reciprocal selec-
tion task used in Fitts’ law studies [17]. As shown in Figure
3, users move a finger between two targets. Instead of ex-
trinsic targets (e.g. buttons), the target here is a joint angle.
Visual feedback is provided on a monitor with high refresh
rate. In contrast to most Fitts’ law studies, we track not only
the endpoints of movements but the full motion of the hand.
This allows us to quantify three aspects of the dexterity of
finger motion: performance (speed and accuracy), individu-
ation (unwanted motion of non-instructed fingers), and com-
fortable motion ranges. In addition, the data allow us to look
at the range of individual differences.

We chose to focus on six joints spanning seven degrees of
freedom (see Figure 3). This selection is motivated by the ca-
pabilities of present-day trackers and our pursuit of studying
joints that could be a “class” of input motions. We conducted
a pilot study of the Leap Motion sensor' and learned that
individuated motions of interphalangeal joints are not well
tracked, except for the thumb. Therefore, we decided to fo-
cus on the flexion/extension of the MCP joints of the fingers
and the CMC joint of the thumb, which intuitively correspond

1https ://www.leapmotion.com/
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Figure 3. The experiment investigates the dexterity of six joints that can
be reliably tracked with the Leap Motion sensor. The user is asked to
move a finger between two target angles indicated on a display. Full
hand motion was tracked. The color coding for joints is used in the
Results section. Note that the CMC joint of the thumb is a special case,
as it can be independently moved in two directions.

to “up” and “down” movements when the hand is in a neu-
tral pose. Moreover, we included the IP joint of the thumb
which was the only interphalangeal joint that could be moved
and tracked well. Figure 3 also shows our naming convention
and color coding used in the rest of the paper. For the thumb
we use Thumb-Down and Thumb-Right to denote “up-down”
and “left-right” movement of the CMC joint.

Participants

The study was conducted with 13 participants (8 male and 5
female) at two different locations. All participants were right-
handed and had an age ranging from 22 to 32 (mean 27). Due
to technical issues, one of the participants completed only 4
of the 7 joint conditions. The experiment took 1.5-2 hours
per participant. Participants from one location were compen-
sated with cinema vouchers. The trials were carried out under
controlled lighting conditions with no distractions.

Experimental Design

The experiment followed a 7 x4 within-subjects design with
7 DOFs and 4 index of difficulty (/D) conditions. To min-
imize order effects, the DOFs and /D conditions were ran-
domized for each participant. Pre-trial practice was employed
and breaks were provided after the trial for each joint.

Task, Materials, and Procedure

The task was a unidimensional target selection task. Partici-
pants had to move a pointer up and down between two targets
on a screen and were instructed to move as fast and accurately
as possible without moving non-instructed fingers too much.
Control occurred by angular motions of joints that were lin-
early mapped to a pointer on the display. A trial would start
from a comfortable neutral pose. The target region turned
green when the pointer reached it and the user had to change
direction to select the previous target again. In each condi-
tion, users had to perform 50 repetitions. Auditory feedback
was given in the form of a low-frequency click. Throughout,
participants placed their hand in a horizontal position over the
sensor with their arm resting on a support.


https://www.leapmotion.com/

Because of anatomical differences, we determined the move-
ment range of each user experimentally, and used it to de-
termine concrete target widths and distances for each user.
Therefore, we first recorded the user-specific angular limits
of each joint at the beginning of each task. We asked the par-
ticipants to flex and extend the joint without moving the other
fingers too much. The corresponding movement range was
then uniformly divided into 2, 3, 4, and 5 bins. This gave us
the same four unique I Ds for every user: 1, 1.6, 2 and 2.3.
Over all discretization levels there were 10 different target
pairs for each joint, resulting in 7 x 10 = 70 conditions.

Apparatus

The joint angles were tracked using the Leap Motion by trans-
forming its output to a kinematic skeleton. The software for
tracking and display of the task ran on a fast desktop com-
puter (3.1 GHz Intel i7 at one place, 3.1 GHz Intel i5 at the
other). We showed visual feedback on high refresh rate mon-
itors (112 Hz CRT and 120 Hz LCD respectively) and the
Leap Motion was capable of tracking at up to 100 Hz.

Analysis

Performance: The design and evaluation of the Fitts’ law
task was done according to [36]. Movements with a move-
ment time or distance beyond 3 SD of the median were ex-
cluded. Accuracy was adjusted to allow an error rate of 5%,
a rate common in high-performance tasks such as text entry.
Based on the remaining movements, we determined the effec-
tive target width Wy, and distance D5y, which was used to
compute the effective index of difficulty (/D,) of each task:

ID, = loga( Wé’% + 1). This indicates the actual difficulty of

the performed task and captures the speed—accuracy trade-off.
To account for individual differences, we cluster the effective
IDs into 5 equally sized bins and compute the average move-
ment time within each bin. For this purpose, we excluded
data points with an effective I D of 3 SD beyond the median.
Least-squares linear regression was then used to determine
the slope and intercept of the Fitts’ law model.

Individuation: We followed the protocol described in [33] to
determine individuation indices. We first plotted, separately
for each user, the normalized angle of every non-instructed
joint as a function of the normalized angle of an instructed
joint. The resulting 500 trajectories were then averaged by
taking the median. Outliers beyond 3 SD of the median were
excluded. The slopes of the resulting data were determined
by least-squares linear regression. While linear movement
trajectories were the norm, there were a few outliers where
a linear relationship could not be determined. We observed
two reasons: (1) Problems in tracking the joint angle (Fig-
ure 5 (b)) and (2) drifting of fingers, a phenomenon in which
the non-instructed joint gradually changes its angle due to fa-
tigue, inattention, or corrective behavior (Figure 5 (c)). To
account for this, we excluded models with a fit of R? < 0.5.
As suggested by Schieber, we averaged the absolute value
for each slope, to generalize the relative individuation over
all participants. These values were then used to compute the
individuation index. In the next section, we report findings
for performance, individuation, and movement ranges.

Fitts' Law models for each joint
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Figure 4. Performance models for each joint as given by Fitts’ law. Over-
all, Index is the fastest, while Thumb and Little finger are the slowest.

Joint Intercepta | Slope b | R?

Index 75.140 126.77 0.95
Middle 49.940 155.03 0.93
Ring 88.450 126.79 0.99
Little 176.52 95.510 0.87
Thumb-Down 8.1900 174.26 0.82
Thumb-Right 84.590 138.44 0.97
Thumb-IP 202.73 91.590 0.93

Table 1. Fitts’ Law models for each joint, given by intercept and slope.

RESULTS

Performance: Fitts’ Law Models

Fitts’ law models and fitness scores for the joints are given
in Table 1. The R? values range from high (0.82) to ex-
cellent (0.99). One-way repeated measures ANOVA showed
statistically significant differences among the joints for M7T":
F(6,60) = 3.3, p < 0.05. Overall, Index had the highest
performance, while Thumb-IP was the worst.

More subtle differences can be observed by looking at the
cross-over points of the slopes in Figure 4. The Index fin-
ger was the fastest for most part of the /D range. However,
for small IDs, corresponding to large neighboring targets,
Thumb-Down outperformed Index. We also observe that for
small I Ds, MT's are spread for the different fingers (differ-
ence of 112 ms, /D = 1) while they become more condensed
for larger I Ds (51 ms, ID = 2.5). In other words, there is
more variation for “easy” movements.

Significant individual differences could be observed. Differ-
ences in MT for the same joint were as large as 418 ms. The
top performance was 91 ms for /D = 1, while the worst user
performed at a speed of 509 ms per movement I D = 1.

Individuation: Schieber Indices
Table 2 provides an overview of the findings. We report ag-
gregate indices per finger and by finger-pair coactivation.

Individuation Index: The individuation index for each fin-
ger can be found in the second column of Table 2. The val-
ues range from 1 for perfect individuation to O for perfect
coactivation. Thumb-IP was found to be the most individu-
ated joint, while Thumb-Down seemed to be the one with the
highest coactivation. The individuation indices of the MCP
joints showed only marginal differences.



Instructed Index of Relative Coactivation

Joint Individuation | Index | Middle | Ring | Little | Thumb-Down | Thumb-Right | Thumb-IP
Index 0.819 1 0.24 0.20 0.19 0.29 0.11 0.06
Middle 0.817 0.16 1 0.41 0.14 0.20 0.11 0.07
Ring 0.808 0.16 0.20 1 0.36 0.15 0.22 0.06
Little 0.806 0.18 0.35 0.29 1 0.14 0.12 0.08
Thumb-Down 0.792 0.12 0.12 0.10 0.08 1 0.69 0.14
Thumb-Right 0.853 0.07 0.09 0.10 0.09 0.27 1 0.26
Thumb-IP 0.889 0.11 0.13 0.11 0.09 0.12 0.12 1

Table 2. Individuation index and relative coactivation describe the involuntary motion of joints. The individuation index is an aggregate that describes
the independence of a finger when averaged over all other fingers (1 = perfect individuation). Relative coactivation denotes the movement of an non-

instructed joint when the instructed joint (each row) is moving. A value of 1 denotes that the two joints always move together.

Joint Min° (SD) Max° (SD) Range (SD)
Index 48.39 (12.25) | —21.19 (8.70) | 69.58 (11.81)
Middle 37.58 (11.95) | —18.69 (8.02) | 56.27 (12.54)
Ring 44.66 (8.320) | —12.24 (7.70) | 58.90 (11.46)
Little 39.47 (15.78) | —20.81 (8.64) | 60.28 (14.89)
Thumb-Down | 27.31 (1.680) | —6.280 (6.54) | 33.58 (7.130)
Thumb-Right | 22.18 (10.53) | —11.99 (8.43) | 31.32(12.59)
Thumb-IP 62.97 (12.94) | —27.41 (4.37) | 90.38 (13.93)

Table 3. Angular limits and movement range of each joint. The table
shows values averaged over all users together with standard deviations.

Relative Coactivation: While the individuation index pro-
vides an elegant way to summarize the independence of each
finger, greater insight is provided by the relative coactivation
of joints, which denotes the movement of an non-instructed
finger when the instructed finger is moved. In Table 2, we
present the relative coactivation averaged over all users. It
ranges from O to 1, where 1 is perfect coactivation, i.e. the
non-instructed finger moves exactly along with the instructed
finger. Note that the value range is the opposite to the indi-
viduation index, where 1 is better. We observe that Thumb-
Down is closely correlated with Thumb-Right, explaining
why it has the lowest individuation index. This indicates
that the two DOFs of the thumb’s CMC joint cannot be reli-
ably distinguished and should be combined when implement-
ing thumb movements for gestural input. Particularly high
values were also observed for the movement of Ring during
instructed movement of Middle, and the other way around
(Figure 6). Thumb-IP shows low values throughout all joints
which explains the good individuation index.

Comfortable Movement Ranges

The average angular limits and movement range for each
joint are given in Table 3. The values represent joint limits
that are comfortable for the user in this setting and reach-
able without moving the other joints too much. One-way
repeated measures ANOVA (subjects with missing data ex-
cluded) showed statistically significant differences between
movement ranges: F(6,60) = 39.19, p < 0.0001. We
observe that the CMC joint of the thumb has the smallest
movement range in both movement directions (34°and 31°).
The range of the MCP joints is twice that, and Index has the
largest range (70°). Thumb-IP has overall the largest move-
ment range with an average of 90°.

Observations on Individual Differences

Large differences among users were observed. Some users
were able to keep their non-instructed finger nearly static
(slope close to 0), while others moved them to a large ex-
tent along with the instructed joint (slope = 0.4). Figure 7

Raw Data for movement trajectories
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Figure 5. Raw data for movement of Index relative to instructed move-
ment of Thumb-Down. Left (a): Example of high individuation, Middle
(b): Tracking errors (red box), and Right (c): “drifting finger”.

shows the coactivation of Index relative to Middle. Move-
ment strategies vary too, resulting in a positive slope (mov-
ing along with the instructed joint) or even a negative slope
(moving opposite to the instructed joint). If a joint could
not be kept static, users either moved it along with the in-
structed joint or opposite to it. Attempts at “counteracting”
movement like this were also observed in the original work
by Schieber [33]. It may represent a strategy for preventing
non-instructed fingers from moving along instructed digits.
This suggests that these strategies are applied unconsciously.

We also observed what we denote as the drifting finger effect:
the position of non-instructed fingers may change gradually
over time for some users, as they “forget” to keep the finger
still. For some users, this poses no problem, they are able to
produce the exact same movement over and over (Figure 5
(a)). We show raw data of this “drifting finger” problem in
Figure 5 (c). Due to user-specific differences like this, the
linear model of Schieber does not always fit to a user’s mo-
tion. On average, an R? of 0.77 (SD 0.14) was found, ranging
from 0.5 to excellent fits of 0.99. As discussed above, we ex-
cluded the data where no sufficient linear relationship could
be found. On average, this amounted to excluding data from
4 users per joint-joint condition.

Finally, despite our efforts to ensure the ergonomics of the
posture and to provide enough breaks, some users complained
about fatigue, especially with their wrist or arm getting tired.
This suggests that these motions are tiring even if they do not
require the use of large forces.

APPLICATION TO TEXT ENTRY

The results of the study offer a nuanced picture of the two
characteristics of finger motions. The performance and in-
dependence of fingers differ and are inter-connected in sub-
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Figure 6. Average coactivation of all joints relative to the instructed
movement of the middle finger. The slopes are the average of the ab-
solute values over all users.

tle ways. In this section, we present a proof-of-concept that
shows how to use the results to design multi-finger gestures
for a high-performance input task. We chose to focus on text
entry by mapping static mid-air hand postures to letters. We
use the terms ‘gesture’ and ‘posture’ interchangeably in this
section to denote static postures. Mid-air input is a promising
input modality for emerging devices like smartwatches and
heads-up displays [20]. In contrast to previous mid-air text
entry methods which used extrinsic key targets or handwrit-
ing gestures [1, 20, 25, 35], we focus on chord-like gestures
controlled by angular motions. Although more complex than
single finger input, it has been shown that a large number of
chords can be memorized [34] and used for text entry (e.g.
[9, 16]), as well as on multitouch displays [2].

Since the space of possible posture-letter mappings is (expo-
nentially) large, we follow an optimization approach (e.g. [8,
40]). We outline a novel objective function called PALM that
optimizes mappings for four objectives. In addition to perfor-
mance and individuation constraints, it considers learnabil-
ity and mnemonics. The outcomes can be used to enter text
with any hand tracker and gesture recognizer. Our approach
has four main steps, which serve as a roadmap for design-
ing tasks other than text entry: (1) Discretizing Joint Angles,
(2) Generalizing to Multi-Joint Gestures, (3) Formulating an
Objective Function, and (4) Optimization.

Step 1: Discretizing Joint Angles

We first need to select the number of discretization levels of
angular motion that each joint can afford. This is determined
by the robustness of the hand tracker and by performance data
we obtained. Our estimate for angular discretization when
using the Leap Motion is between 2 and 5 levels per joint an-
gle. For each joint, an integer from 0-F is used to represent
the current joint angle, where k is the highest level. Thus,
the posture of the hand can be compactly represented using a
string of numbers which we call a bin address. For instance,
the posture corresponding to the letter ‘h’ in Figure 1 can be
denoted by the string [0,0,1,1,0] (using 5 joints). We also
define a neutral pose for the hand, which is a comfortable po-
sition, and calibrate such that it corresponds to the bin address
[0,0,0,0,0].

Individual coactivation of Index relative to Middle
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Figure 7. Differences among users (denoted by four digit user ID) in the
movement of the index finger relative to the middle finger. A positive
slope indicates that it follows the instructed joint, negative slope that it
moves in the opposite direction.

Step 2: Generalizing to Multi-Joint Gestures

Since the findings from our study are for single joints, we
make two assumptions to generalize to multi-joint gestures.
First, to estimate movement time (M 1) for gestures involving
multiple joints, we assume that it is bounded by the perfor-
mance of the slowest contributing joint. We base this on evi-
dence that movement of arm joints are timed so that all joints
reach their final positions simultaneously [13, 32]. Thus, we
estimate the time for a multi-joint gesture as the maximum
over each of the MT's of all joints involved. Formally, we
define time for moving from one posture to another as,

MT = max{mty,},0; € O, 3)

where mty corresponds to the movement time of one joint as
given in Equation (1).

Second, to estimate individuation constraints of a multi-finger
gesture, we extend the individuation index of Schieber to take
into account the fact that coactivation between fingers is not
an issue when those fingers are used in the same gesture. The
middle finger, for example, has a poor individuation index,
which is mainly dominated by the relative coactivation of the
ring finger. A gesture involving both fingers can therefore be
performed with higher individuation than a gesture involving
only one of the fingers. To this end, we define the coactiva-
tion C;¢ of a joint ¢ relative to a gesture (or posture) G as the
maximal coactivation of 7 relative to any joint j involved in
the gesture: C;g = maxjeg Cj;. Then, following the origi-
nal Equation (2), we compute the individuation index for any
multi-joint gesture as

Ig=1- [(ZICiGI —1GD/n = 1G]], @

where |G| denotes the number of actively involved joints, and
n is the total number of joints.

Step 3: Objective Function Formulation

Our design task is to maximize the usability U of a letter
assignment, i.e. the mapping of each character in a char-
acter set to a unique posture (gesture) of the hand. To
characterize U, we formulate a multi-term objective func-
tion for mid-air text entry called PALM which addresses



four factors affecting mid-air text entry with multiple fin-
gers: Performance, Anatomical comfort (individuation),
Learnability, and Mnemonics. In addition to performance
and individuation, we formalize learnability and mnemonics
based on existing literature.

Usability U is thus defined as a weighted sum of four normal-
ized (i.e. € [0,1]) terms®. Formally, we write our usability
objective as

U=w,P+ws A+w L+ wy, M, 5)

where the positive weights w,,, w,, w;, and w,, set by a de-
signer sum up to 1. The remaining terms in the objective
function are described below in turn.

Performance Term (P)

Our performance score P is measured in words per minute
(WPM). Following previous work on keyboard optimiza-
tion [8, 40], we use Fitts’ law models to predict the time miy,
to articulate a joint from letter & to letter £ by computing the
movement time as described in Equation (3).

We then compute WPM with 5 % error rate as:

P = 60/(2 Z fremtre) X 5, (6)
k L

where f, is the frequency of bigram k.

A natomical Comfort Term (A)

For each gesture, we use Equation (4) to estimate how well
it individuates. An index of 1 corresponds to perfect individ-
uation where none of the non-instructed joints moves along
with the joints involved in the gesture, a value of 0 would
mean that all fingers move to the same extent, even if they

are not part of the gesture. Thus, A takes the value of the
individuation index.

Learnability Term (L)

Learnability is an important factor to consider for any activity
involving rapid and careful articulation of multiple joints. To
develop a score for learnability of a gesture, we build on some
prevalent theories of motor learning that view learning as a hi-
erarchical combination of primitives [22]. According to this
view, the brain simplifies multi-dimensional motor control by
collapsing it into a few dimensions. Practicing a complex
gesture gradually increases hierarchical organization and de-
creases reliance on feedback. This has two consequences.
First, the fewer DOFs a gesture involves, the easier it will be
to learn. For instance, gesturing with one finger is easier to
learn than a gesture using three fingers. We name the number
of involved DOFs ug40f5. Second, if the involved digits involve
the same end posture, it will be easier to learn because the
articulations can be represented with a single learning primi-
tive. For example, it is easier to extend all digits by 40° than
to extend some by 20° and others by 40°. We denote the num-
ber of DOFs for which a target angle is defined in a gesture
by Uargets- Our learnability score combines these two aspects:

L=1-= (0.5 0umges.k + 0.5 Gaofs. k)- (7)
k

2Normalized variables are marked with a hat.

Mnemonics Term (M)

Studies of human memory suggest that categorization, chunk-
ing, and mnenomics help forming more durable long-term
memory traces among otherwise unrelated materials [38].
Our mnemonics score M considers the memorability of a let-
ter assignment as a whole. We call a mnemonic set a set of
similar gestures, such as gestures that all have a neighboring
finger. To identify finger mnemonics, we build on a recent
study of multi-finger chord gestures that showed a positive
effect on learning [38]. We take the mnemonic principles
presented there and extend them from three fingers to five. In
particular, we include the following mnemonics rules: neigh-
boring fingers (e.g. thumb and little finger together), base (e.g.
thumb or index with other fingers), and single finger.

The M-score considers two aspects: (1) the proportion of
gestures belonging to a mnemonic set Mcoverage and (2) how
Jfew mnemonic sets are required mges, Which is the inverse of
the proportion of all mnemonic sets being in use. We define
M = 0.5 (Mcoyerage +Miets)- M thus rewards designs where a
large proportion of gestures belong to a few mnemonics sets.
While our learnability score L looks at motor learning “from
scratch”, this score focuses on the benefit of the set consisting
of easily recognizable gestures.

Step 4: Optimization

To optimize the multi-term objective function we use tech-
niques from multi-dimensional Pareto optimization [29]. In-
stead of searching for a global optimum in a single run, we
use a multi-start local search method. Local search starts from
a random position in the search space and randomly samples
its neighborhood. When search converges, we store the in-
cumbent to a file and restart search. A similar approach was
used in a previous paper addressing a multi-objective task [8].
Our implementation reaches reasonable designs in minutes
while good ones take about one day on a cluster computer.

DESIGN CASES

This section presents mappings optimized for fast perfor-
mance, learnability, as well as for different character sets.
Apart from this, we present solutions with multiple discretiza-
tion levels for the joint angles. This demonstrates how the ap-
proach can be used across varying design interests. Finally,
we present a preliminary evaluation of one of our designs.

Before discussing the designs, we report our experiences re-
garding the value of optimizing for all four objectives of
PALM. To learn if performance and individuation are com-
patible design goals, we optimized for P, A, and P+A goals
separately. The results showed that the benefit of optimizing
for only one of the goals is negligible. In other words, perfor-
mance and individuation may not always be competitive goals
for design. The P-only design has fewer multi-joint gestures,
whereas both A-only and P+A have more gestures involving
neighboring fingers. This encouraged further exploration of
the multi-objective design space.

Table 5 lists all outcomes along with two alternative text en-
try methods: Engelbart’s chording keyboard [9] and a fin-
gerspelling method (American Sign Language). Words per
minute is predicted considering expert motor performance



Bin Address | Character || Bin Address | Character
0,1,0,0,0 _ 1,1,0,0,0 n
1,0,0,0,0 a 1,0,0,1,0 0
0,0,1,0,1 b 0,0,0,1,1 p
1,1,0,1,0 c 0,1,1,1,1 q
0,1,1,1,0 d 0,1,0,1,0 r
0,0,0,1,0 e 0,1,1,0,0 s
1,1,1,1,0 f 0,0,1,0,0 t
0,1,0,0,1 g 0,0,0,0,1 u
0,0,1,1,0 h 1,0,0,1,1 v
1,0,1,0,0 i 1,0,0,0,1 w
0,1,1,0,1 j 0,0,1,1,1 X
1,1,0,0,1 k 0,1,0,1,1 y
1,1,1,0,0 1 1,0,1,0,1 z
1,0,1,1,0 m

Table 4. FASTTYPE was optimized favoring Performance. The bin ad-
dresses describe each gesture, see text for explanation. Observe how
commonly occurring letters like ‘a’ are assigned to easy postures such as
flexing the thumb.

only, using Equation (6). Due to space limitations we report
the full mapping only for FASTTYPE in Table 4. Please see
the supplementary material for the remaining mappings.

Standard Character Sets: NUMPAD is a solution that maps
the numbers from 0-9 to postures formed by the 5 joints,
one per finger. Each joint angle is discretized into 2 levels.
The predicted performance for this mapping is the highest at
113.0 WPM due to the small character set. FASTTYPE is a so-
lution with the letters a—z (including space), and 5 joints each
with 2 discretization levels. This mapping was optimized for
typing speed and uses chord-like movements with a predicted
performance of 54.7 WPM. We show this mapping in Table
4. In the table, we use the concept of bin address as explained
earlier. The joints are ordered from Thumb to Little. For ex-
ample, [0,0,0,0,1] would mean flexing Little but keeping the
rest in a neutral pose. BALANCETYPE, a variant with bal-
anced weights for the four objective function weights had a
predicted performance of 50.1 WPM.

Extended Character Sets: FULLTYPE is optimized to map
all letters of the alphabet, numbers, and special characters
for a total of 48 characters. The predicted performance was
50.7 WPM with 5 joints and 5 discretization levels per joint.
While this mapping has a good predicted performance, we
hypothesize that it is hard to perform because of 5 discretiza-
tion levels for joint angles. Finally, THREETYPE optimizes a
full keyboard to the three fingers with the highest individua-
tions: Thumb, Index, Middle. It, too, assumes 5 discretiza-
tion levels which is presently impossible with our tracker and
would require a long time to learn.

We also represented fingerspelling in American Sign Lan-
guage using our bin address notation. For the represented
mapping, our objective function predicts an entry rate of
43.9 WPM which is surprisingly close to the empirically ob-
served rate of 40-45 WPM for experienced practitioners [30].

First Observations on User Performance: FASTTYPE

In order to estimate if the predicted performance is indeed
achievable with mid-air text entry, we conducted a prelimi-
nary evaluation of FASTTYPE with 10 users. We followed
a word-level paradigm previously used by Zhai et al. [5].
Here, a randomly sampled word is practiced until perfor-

mance peaks. The benefit of this is that the upper boundary
of entry performance can be estimated even without having
to learn the full gesture set.

Method: 10 right-handed participants took part in the exper-
iment (9 male, 1 female; ages from 21 to 39, mean 26). The
experiment took 1.5-2 hours and all participants were com-
pensated. We randomly sampled 4-8 character strings from
the Enron Email Dataset [37] for the stimulus. Each con-
tained 1-2 frequently entered words and also included the
space character. A task consisted of repeatedly entering a
word. At the beginning, participants were allowed to practice
the word by going through the gestures for all letters and ex-
ploring the fastest transitions between each gesture. As soon
as they could memorize the mapping of the corresponding
letters, the task started. The task was terminated by the ex-
perimenter when a performance plateau could be observed.

Prototype: We built a prototype that allowed users to en-
ter text, and recorded performance of typed words. Our ges-
ture recognizer used joint angle data from the Leap Motion,
and used a combination of dwell times and signal peak de-
tection to detect when users made a particular posture which
was converted to text. A custom-built application displayed
information to the user as well as recorded data for analysis.
The hardware used was identical to the first experiment.

Result: Overall, the 10 users entered 53 words at an average
peak performance of 22.25 WPM (SD 8.9). For analyzing the
peak performance of each word, we extracted the top 3 repeti-
tions with an error rate less than 15% (measured by Damerau-
Levenshtein distance). Three words had to be excluded due
to this restriction. The remaining words were typed with an
average error rate of 2.3% (SD 0.04). A one-way ANOVA
on WPMs showed a statistically significant difference among
users: F(9,49) = 7.68, p < 0.001. Average peak perfor-
mances ranged from 13 WPM to 38.1 WPM. This large per-
formance range clearly shows the influence of individual dif-
ferences in performance, individuation and anatomical limita-
tions found in our first experiment. While these results serve
as a first exploration of PALM, further detailed studies are
needed to validate the effectiveness of our model.

DISCUSSION

The results presented in this paper deepen the understand-
ing of multi-finger input in mid-air. The findings show that
multi-finger input has potential for high throughput. While it
was known previously that differences existed in performance
and individuation between fingers, they were not quantified
in a setting that is representative of modern computer vision-
based input. Our results were obtained by adapting the famil-
iar methodology of Fitts’ law studies along with a measure-
ment of individuation adopted from motor control research.
This is in contrast to existing work in gesture design that
has considered elicitation methods to learn about user pref-
erences, intuitiveness, and social acceptability [23, 26, 31].

In a proof-of-concept, we demonstrated the applicability of
our results by computationally optimizing a mid-air text en-
try method. Based on prior work on motor performance [13,
32], we extended our findings from single fingers to multi-



Mapping Character Joint Weights (PALM) Objective values (PALM) Predicted

Set Discretization WPM

NUMPAD 0-9 2,2,2,2,2 0.30, 0.30, 0.05, 0.05 0.27,0.03, 0.22, 0.22 113.0
FASTTYPE a-z 2,2,2,2,2 0.50, 0.10, 0.10, 0.30 0.53,0.03, 0.18, 0.50 54.7
BALANCETYPE a-z 5,5,5,4,4 0.25,0.25, 0.25, 0.25 0.42,0.02,0.19,0.17 50.1
FULLTYPE 0-9, a—z 5,5,5,5,5 0.20, 0.20, 0.20, 0.20 0.41,0.14, 0.19,0.33 50.7
THREETYPE a-z 5,5,4 0.40, 0.40, 0.20, 0.00 0.38, 0.01, 0.28, 0.00 65.1
Fingerspelling a-z 4,3,3,3,3 0.25,0.25, 0.25, 0.25 0.51,0.02, 0.28, 0.80 439
Engelbart’s Chord Kbd a—z 2,2,2,2,2 0.25,0.25, 0.25, 0.25 0.58,0.03, 0.17, 0.69 49.0

Table 5. An overview of optimized mappings and predicted WPM. The bottom part shows predictions for two existing methods.

joint gestures. The P and A terms of PALM are based on
the empirical results, whereas the L and M terms are derived
from prior work on human memory and motor learning [22,
38]. While further evaluation is needed to prove the validity
of these assumptions, we show how our findings can serve in
the search for good solutions among millions of designs.

To analyze the outcomes, we built a prototype and explored
the performance for one of the optimized mappings which
showed an entry rate of 22 WPM. While the performance pre-
dicted by Equation (6) was surprisingly close to the observed
performance in fingerspelling, FASTTYPE falls short of the
predicted rate of 54.7 WPM. As Equation (6) only predicts
expert motor performance, this can be partially attributed to
the lack of training and limited tracker performance. How-
ever, further evaluation is needed to investigate learning over
time and cognitive effort involved in mid-air input.

CONCLUSION AND FUTURE WORK

In this paper, we investigated the dexterity of fingers for mid-
air input. The results provide insights into the performance of
individual fingers and their coactivation. The findings suggest
that mid-air input is a promising input modality, but there are
limitations to the capacity of the human hand.

The physiology and cognitive skills of humans pose two crit-
ical constraints that future work should consider. First, the
learnability of gestures is a pragmatic obstacle for multi-
finger input. If a gesture set for text entry is prohibitively
time consuming to learn it will affect large-scale adoption.
With PALM, we propose a method to optimize for learnabil-
ity. However, further evaluation is needed to investigate the
influence of the L and M term on performance and learnabil-
ity, and evaluate the involved models. Second, the effect of
fatigue in multi-finger input is not fully understood yet. Users
in both our studies reported discomfort in their arm and wrist.

The technological challenges of hand tracking without mark-
ers pose additional constraints to mid-air input. Despite much
progress, markerless hand and finger tracking is still a chal-
lenging problem. We restricted our study to 6 joints since
even commercial sensors like the Leap Motion could not re-
liably track certain finger joints. Our evaluation showed that
users were limited in their speed by errors in tracking all joint
angles under fast motion. We assume that some of these is-
sues arise from assumptions about finger individuation used
by the tracker.

A notable omission in our investigation is appropriate feed-
back for mid-air input. While no visual feedback is needed
for our text entry method, it is unknown if proprioception

alone suffices to perform fast and accurate mid-air gestures.
As an alternative, tactile feedback was shown to improve per-
formance on touch screens [11] and new technologies such
as UltraHaptics [6] provide a way to bring non-contact haptic
feedback to mid-air input.

This paper has contributed empirically derived models of per-
formance factors involved in mid-air input and a proof-of-
concept approach to design. Our optimizer allows finding de-
signs that strike desirable trade-offs in this demanding design
landscape. Although our final evaluation of mid-air text en-
try fell short of the performance predicted by our Fitts’ law
model, the result is promising and justifies further research.
We believe that when the outstanding human and technolog-
ical issues are solved, this category of input can achieve per-
formance that is currently seen only for physical keyboards.
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